Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution.

نویسندگان

  • Rey-May Liou
  • Shih-Hsiung Chen
  • Mu-Ya Hung
  • Chin-Shan Hsu
  • Juin-Yih Lai
چکیده

FeIII supported on resin as an effective catalyst for oxidation was prepared and applied for the degradation of aqueous phenol. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch reactor using hydrogen peroxide as the oxidant. The influent factors on oxidation, such as catalyst dosage, H2O2 concentration, pH, and phenol concentration were examined by considering both phenol conversion and chemical oxygen demand (COD) removal. The FeIII-resin catalyst possesses a high oxidation activity for phenol degradation in aqueous solution. The experimental results of this study show that almost 100% phenol conversion and over 80% COD removal can be achieved with the FeIII-resin catalyst catalytic oxidation system. A series of prepared resin were investigated for improving the oxidation efficiency. It was found that the reaction temperature and initial pH in solution significantly affected both of phenol conversion and COD removal efficiency. The activity of the catalyst significantly decreased at high pH, which was similar to the Fenton-like reaction mechanism. Results in this study indicate that the FeIII-resin catalytic oxidation process is an efficient method for the treatment of phenolic wastewater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epoxidation of Alkenes and Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by a Fe (Br8TPPS) Supported on Amberlite IRA-400

Iron (III) meso-tetrakis(p-sulfonatophenyl)-β-octabromoporphyrin supported on Amberlite IRA- 400 [Fe(Br8 TPPS)-Ad-400] is a robust and efficient catalyst for oxidation of alkenes and alcohols at room temperature. The catalyst exhibits a high activity and stability in hydrocarbon oxidation by H2 O2 . The method was useful in the oxidation of various primary, secondary-aliphatic, alicyclic and ar...

متن کامل

Mn (III) salen complex supported on graphene oxide nanosheets as a highly selective and recoverable catalyst for the oxidation of sulfides

In this study, Mn (III) salen complex was synthesized and immobilized onto the graphene oxide, which is modified by 3-chloropropyltrimethoxy silane. Heterogeneous catalyst was characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, fourier transform infrared spectra, nitrogen adsorption−desorption isotherm and atomic absorption spectroscopy. The catalyt...

متن کامل

Porphyrin grafted magnetic nanopaticles as an eco-friendly, cost-effective catalyst for green oxidation of sulfides by meta-Chloro peroxy benzoic acid

In this paper, meso-Tetraphenylporphyrin iron(III) chloride complex, Fe(TPP)Cl, supported on magnetic nanoparticles (PCMNPs) was synthesized and characterized by HRTEM, SEM, TGA, and FT-IR and VSM. The value of saturation magnetic moments of MNPs and PCMNPs are 68.5 and 60.3 emu/g, respectively. The SEM and HRTEM image were shown the uniformity and spherical-like morphology of nanoparticles wit...

متن کامل

Vanadium oxide supported on mesocellulous silica foams (MCF): An efficient and reusable catalyst for selective oxidation of sulfides

A green, efficient and selective approach for the oxidation of sulfides to sulfoxides and sulfones with UHP at room temperature is reported. The reaction is performed in the presence of vanadia catalyst supported on mesocellular silica foam (MCF) with a V content ranging from 2% to 10% as heterogeneous and reusable catalyst. The structural and textural characterization of this catalyst were don...

متن کامل

Catalytic wet air oxidation of aqueous solution of phenol over Pt/CNF catalyst

The catalytic wet air oxidation (CWAO) of phenol has been studied in trickled bed reactor using 2 wt.% platinum supported on carbon nanofibers (Pt/CNF) as catalyst. The catalyst was prepared by incipient wetness impregnation, and characterized by N2 adsorption, XRD and TEM. The operational variables studied and their range were: total air pressure, temperature, catalyst load, air and liquid flo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 59 1  شماره 

صفحات  -

تاریخ انتشار 2005